
GPU BASED
TEXTURE
SYNTHESIS

I first experimented with texture generation in 2000. For a while I

didn’t really get far because there weren’t too many resources

on the topic - until I found an article written by Ile/Aardbei,

which I still highly recommend to anyone new to the subject.

The article you’re reading is meant to be a follow up to Ile’s -

we now have graphical hardware that is basically built to do

this sort of stuff, but using only the GPU to implement a texture

generator can be tricky due to the nature of pixel shaders.

In this article I’m going to describe a solution that worked out

pretty well for us. It is recommended that you already have

some knowledge of texture generation and shader program-

ming when reading this.

When I set out to move our texture generator to the GPU, I had

a few goals in mind:

 » A common, simple rendering function to execute all filters

(so optimally only the shaders change, and no extra cpu

code is needed for any operator)

 » Recreate each filter from the old texgen so we don’t lose

functionality

 » The filters had to be as similar as possible to their old coun-

terparts

 » One pixelshader per filter, one vertexshader for the whole

texgen

 » For the sake of compatibility, it all had to fit into shader

model 2.0

Most of these goals proved possible, with only small tradeoffs

here and there.

When you’re writing a filter for a CPU based texture generator,

you’re working with two kinds of input data: filter parameters

and the outputs of previously executed filters. On the GPU this

is not dealt with differently; you have to pass the same data to

the pixel shader. The filter parameters are loaded as uniforms

into the pixel shader, and the intermediate images are loaded

as textures.

On the CPU side you’ll of course need some code to execute

the filters; we’ll call this the rendering function. Most of the fil-

ters used in common texture generators can be recreated by

rendering a single pixelshaded quad onto a texture, so the

best idea is to start here and expand from this as needed.

The simplest rendering function fills the whole rendertarget by

rendering a single quad on it. The pixelshader draws an im-

age using the texture coordinates and any additional data

(parameters in the form of uniforms or images in the form of

textures) you provide. Some simple generators (sinusplasma,

gradients, etc), layer operations (colorize, blends, etc), and

most distortion operations (twirl, sinedistort, rotozoom, mapdis-

tort etc) can be handled this way. For example you can gen-

erate a gradient by setting the x texture coordinate to be the

result of the shader.

This function will get you started, however there are some filters

that can’t be done from shaders at all - an image loader or

a text writer are good examples. These filters require lookup

textures calculated the old fashioned way on the CPU before

they execute. The idea is to expand the rendering function

USING ONLY THE GPU TO
IMPLEMENT A TEXTURE
GENERATOR CAN BE TRICKY
DUE TO THE NATURE OF PIXEL
SHADERS

BY BOYC OF CONSPIRACY

GETTING STARTED

A cell clustering

COMPLICATED SHADERS

G
PU

 B
AS

ED
 T

EX
TU

RE
 S

YN
TH

ES
IS with the ability to create such textures when needed,

and not use them most of the time. The lookup texture

should contain any data that the filter shader needs to

finish the job (such as a loaded image, etc - however

note that the function that generates the lookup tex-

ture can’t have access to intermediate images from

the GPU without severe performance costs, so it’s not

practical to try and mix CPU and GPU based genera-

tion this way.) Such lookup textures can help with a lot

of filters: for example a 256x1 image can make for a

nice palette to colorize the image with.

Generators based on random numbers will also use

such a lookup. There is no rand() in shaders, so the next

best thing to do is to supply the shader with pseudorandom

data in the form of a texture. A single precalculated 1024x1024

noisemap works nicely across the whole system, however

you’ll need to do some transformations on the texture to avoid

repeating patterns and help randomize your results. Scaling

with an x>1 nonround value combined with a random offset

will do the trick most of the time.

The remaining filters (stuff like blur, perlin noise, etc) will need

another expansion of the rendering function: support for multi-

ple passes. Working with multiple passes requires a temporary

rendertarget, which needs to be swapped between passes

much like front/backbuffers are swapped between frames.

This way the rendering function can leave any original input

rendertargets intact for further use by other filters. Of course

rendering with the same parameters in multiple passes will

mostly do the exact same thing so the passcount should also

be uploaded into the shaders as a parameter to use. If you

need a filter that changes the number of passes based on a

user given parameter, the function that would normally be

overloaded to create a lookup texture can set the required

number of passes before executing the filter.

In some cases it might be desirable for a filter to have an un-

defined number of inputs (a combine filter for example, where

the number of images combined can vary). These operations

can be done by rendering in multiple passes and replacing

the lookup texture in each pass to the current result.

Let’s have a look at how to do some of the more complicated

filters with this system:

Blur: The blur filter can be divided into an x and a y pass. The

idea is to take a fixed number of samples from the input and

combine these by using a distance function (gaussian, line-

ar, etc). The size of the blur can be varied by changing the

distance between the sampling points; however this will add

a ghosting effect after a certain distance due to the limited

number of used samples. To fix this additional x and y passes

can be added to the filter.

Subplasma: In his article Ile used catmull-rom interpolation

for low resolution noise to get a nice subplasma effect. Un-

fortunately to do this in a single pass would require taking 16

samples from the noisemap and mixing them in a way that

exceeds the limitations of the ps2.0 model. It’s possible to get

around this with the multipass approach with a single shader:

The first pass samples the noise and interpolates it in the x di-

rection the second pass interpolates the result in the y direc-

tion.

Perlin noise: To mix several of the above described subplasma

effects and create perlin noise that way is not possible in this

system. An extra temporary buffer would be required

to do that, which I find is a bit of overkill for a single fil-

ter to work. It’s possible to do linear interpolated noise

instead of catmull-rom in one pass though, which will

work just as well.

Cells: Traditionally, to create a cells effect one takes

a number of points, and for each point of the texture

takes the distance to the closest one. The problem

with implementing this approach in a shader is that

the number of points will be fixed and fairly limited.

The same effect can be achieved by taking a simple

distance map (the distance of the current texture co-

ordinate from the center), adding a random offset,

and combining it with itself with a min() operation. This can

be done for n points in n passes, or it can be done recursively

which is a lot faster but will produce weird clustering effects

with some random seeds (as seen on the picture). The catch is

that effects that would require the second closest point (cells

borders for example) aren’t possible this way.

G
PU

 B
AS

ED
 T

EX
TU

RE
 S

YN
TH

ES
IS

Pros:

 » A lot faster thanks to hardware that is built to do

this

 » Smaller - the shader code is a lot less complicat-

ed than its cpu counterpart (in numbers: cpu tex-

gen = 11743 bytes, gpu texgen = 6959 bytes, both

with all the filters included, kkrunchied)

 » Texture filter editor can be easily implemented in

a demotool - no more need to recompile the tex-

gen to add/remove filters

Cons:

 » Less compatibility (requires ps2.0 videocard)

 » Memory management requires more work than on the

cpu (especially when working with big textures)

 » Multithreading can be a problem

Any questions are welcome at boyc(at)conspiracy(dot)hu

I’d like to thank ryg/Farbrausch and jimmi/TGD for their help

and ideas.

void execute(Input, Output)

{

 // create lookup texture and/or change passcount accord-

ing to input parameters

 lut=prerendersetup();

 Target1=Output;

 Target2=create_temporary_rendertarget();

 // ensure correct output

 if (passcount&1) swaptargets(Target1, Target2);

PSEUDO CODE FOR THE FINAL
RENDERING FUNCTION

PROS AND CONS COMPARED
TO CPU

G
PU

 B
AS

ED
 T

EX
TU

RE
 S

YN
TH

ES
IS

 » A lot of the filters can be reused as video postprocessing

effects

 » Quality - it’s easy to switch from 8 bit rgba to float textures

if needed

 » Texture sizes can vary between filters, the video card takes

care of that

 » Almost realtime speeds even on more complex operator

chains and the graphician can work easily due to imme-

diate feedback

 for (x=0; x<passcount; x++)

 {

 // send pass specific data for the shader

 setpassdata(x);

 // replace the lookup texture if needed

 lut=replacelookuptexture(x);

 // render quad to the current target

 if (!x) render(x, Input, Target1, lut);

 else render(x, Target2, Target1, lut);

 // swap target buffers

 swaptargets(Target1, Target2);

 }

 // free temporary textures

 delete lut;

